
Modelling the Enterprise Data Architecture
Copyright © Andrew K. Johnston and Richard Wiggins, 2003

Unlike the simplistic models in books and training courses, a real enterprise has a very
complicated data architecture. Most of the data will be held in large legacy or package
systems, for which the details of data structure may be unknown. Other data will be held in
spreadsheets and personal databases (such as Microsoft Access), and may be invisible to the
IT department or senior business data administrators. Some key data may reside in external
systems maintained by service providers or business partners. As you explore your own
complex data architecture, you come to accept two realities:

1. You have little control over the way high-level business data concepts are realised.
Data is likely to be highly dispersed, often without adequate controls on quality.

2. Most data is duplicated across a number of systems, with significant variations in
quality, format, and meaning. Some of the copies, maintained by Enterprise
Application Integration technology (EAI) or careful business processes, may be good
(but probably not perfect). Most are very poor, maintained only by occasional batch
transfers and stressed or broken manual processes. Organisational and business
process conflicts, or simple failures of trust, may get in the way of common sense
improvements.

The poor copies may be causing business problems. Furthermore, initiatives such as
Customer Relationship Management (CRM) and Business Intelligence will need to merge
data from various sources. Some organizations work to harness various legacy systems in
end-to-end processes. Either the business or IT may be driving changes to simplify business
processes, streamline data flows, and reduce duplication. Modelling can be of great benefit in
meeting these challenges. But most traditional modelling approaches don’t address these
requirements.

They produce models which are either too detailed to be of use, or not detailed enough, and
typically fail to focus on the difficult issues of the enterprise data architecture and the
integration of its various components.

We believe it is important to create powerful, simple, but effective models of the data
structure from an enterprise viewpoint -- a set of models known as the “Enterprise Data
Architecture.” This article describes a new approach, based on UML, which we believe meets
the real requirements of modelling the Enterprise Data Architecture.

Note: some of the later steps of this approach introduce techniques which may at first seem a
little complicated. Don’t worry! You don’t need to use all the techniques every time, and the
earlier stages deliver benefit in their own right. The important thing is to develop models
which help to answer your problems.

What is the Data Architecture?

An enterprise’s information systems architecture has many interrelated aspects, including
applications, hardware, networks, business processes, technology choices, and data. As
shown in Figure 1, the data architecture is a layered set of models which provides a solid
foundation for strategic initiatives such as:

• A Data Strategy, outlining the business’s aims and objectives for improved collection
and use of data,

Modelling the Enterprise Data Architecture © Andrew K. Johnston and Richard Wiggins 2003 Page 1

• Business process improvements,

• Decisions on the future of new and changed systems,

• Integration, data warehousing, and reporting initiatives.

Enterprise Data Architecture Models

Enterprise
Application
Integration

Business
Intelligence

System
Rationalisation

Business Process
Improvement Programmes

Data
Strategy

Figure 1: Enterprise data architecture models support a variety of common IT and
business improvement initiatives.

Before describing what a data architecture is, it is helpful to consider first what it is not. As
shown in Figure 2, the data architecture is not the set of detailed models of individual
systems, because they cannot convey the “big picture” information required to meet the
above needs. And it is not just the top-level models of business processes and system scopes,
since they don’t include enough detail to answer the real questions.

Figure 2 is a “data architecture map”, which shows the scope and context of the data
architecture. The idea is to map the major data areas in the enterprise on one axis, and the
various types of models on the other axis, ranging from highly business-focused models to
very detailed system structures. The scope of a complete data architecture is shown as a
band across the middle of the chart:

Modelling the Enterprise Data Architecture © Andrew K. Johnston and Richard Wiggins 2003 Page 2

Business process maps

Detailed system
physical data models

High level data
requirements

Common high level data
models

Source, consumer and
custodian analyses

Public standard data
models

Canonical to system-
specific transformations

Data warehouse
physical model

Prod
uc

 t d
ata

W

ork
 da

ta

Prod
uc

tio
n d

ata

Fina
nc

ial
 da

ta
Pers

on
nel

da
ta

Cus
tom

er a
nd T

rad
ing

da

ta

Rea
l -ti

me o
pera

tio
na

l
da

ta

Doc
um

en
ts

an
d

dra
wing

s

Scope of Data Architecture

C
on

ce
pt

ua
l

P
er

sp
ec

tiv
e

S
pe

ci
fic

at
io

n
P

er
sp

ec
tiv

e
Im

pl
em

en
ta

tio
n

P
er

sp
ec

tiv
e

Realisation overviews

Figure 2: The data architecture map shows which models exist for which major
data areas in the enterprise. A complete data architecture is a band across the
middle.

The models which comprise the data architecture are described in more detail in the
following sections. The groupings on the horizontal access will vary from enterprise to
enterprise, but those above represent a typical set. The bands on the right-hand edge are not
really part of the “map,” but show how the models map onto the standard three-level
perspective of UML-based methods such as RUP.

As well as explaining the scope of data architecture work, you can use this model to build a
map of the current state of knowledge, and the scope of ongoing or planned activities.
Simply plot existing or planned modelling efforts at the appropriate intersection. You can
also use colour to indicate the status or validity of a model, which may be useful.

The data architecture map describes “what” comprises the data architecture. The Data
Strategy and initiatives supporting it explain “why”. The individual models describe what
the data is, where it is held, how, when and by whom it is changed.

Which Models Constitute the Data Architecture?

The data architecture is defined primarily by models at four levels, described in the
following sections. As a general rule the high level data model will only change when there
is a significant change in business processes, but the other models will exist in various
versions representing the “as is” structure and one or more “to be” evolutions.

High-Level Data Models

The top level is a group of high-level data models describing the business data from a
conceptual viewpoint, independent of any current realisation by actual systems. Each high-
level data model (HLDM) comprises:

• A common (canonical) UML class model of the main data items (the business entities)
and their relationships,

Modelling the Enterprise Data Architecture © Andrew K. Johnston and Richard Wiggins 2003 Page 3

• A superset of business attributes, including descriptions of their meaning (semantics),
standardised formatting (syntax), and universal constraints.

Since these are data models, they will typically exclude class methods, although it may be
appropriate to summarise where one business object has responsibility to manage the
structure of others.

The model should include all attributes of business significance, and any which define the
data structure (for example, inputs to a business rule which controls multiplicity).

Consider a hypothetical car rental company. The following is part of an example HLDM,
showing how the business entity “vehicle” has two variants: cars and vans, and how any
vehicle may be the subject of one or more rentals:

Car
Band : enum {A,B,C,D}
Number of Seats : Integer

Van
Capacity (Cubic Metres) : Double
Licence Type : String

Vehicle
Registration Mark : String
Model : String
First Registered : Date

Rental
From : Date
To : Date0..*1 0..*1

Option
Option Type : String
Option Value : String

Figure 3: Partial high-level data model for a hypothetical car rental business.

For the purposes of this article, our examples have been dramatically simplified, but we
believe you can see how the techniques could apply to examples with real-world complexity.
We have also relaxed UML conventions on naming classes and attributes to aid in readability
-- e.g. “Registration Mark” includes a space.

Realisation Overviews

The next step is to model the relationships between the conceptual entities of the HLDM and
the real key data objects of current or planned systems, showing how the conceptual entities
are realised by the real ones. Relationships between different realisations of the same data
item, and how changes are propagated across the various systems, are modelled at a later
stage.

The key here is to focus on the “visible” data structure of the systems, i.e., the data structure
exposed by the user interface, reports, and data interfaces. This may not be the same as the
physical data structure, but that is unimportant. Highly-customisable packages may have a
complex meta-model internally, but you are interested in its instantiation in terms of your
business. An ancient legacy system may have an arcane physical structure for historical
reasons, and the implementation details of an external service may be completely hidden
behind an interface façade, but in both cases your focus will be on the visible structure -- the
logical system entities and their attributes.

The following example shows how our simple car rental HLDM is realised by three systems:
CarFleet (an in-house fleet management system), VanCare (an external system used to
support outsourced maintenance of the van fleet) and RentalSystem (the main rental control
system):

Modelling the Enterprise Data Architecture © Andrew K. Johnston and Richard Wiggins 2003 Page 4

Car
Band : enum {A,B,C,D}
Number of Seats : Integer

Van
Capacity (Cubic Metres) : Double
Licence Type : String

Car@CarFleet
Model : String
Band Id : Integer
Seats : Integer
Registration Mark : String
First Registered : Date

Truck@VanCare
Model : String
Capacity (Cubic Feet) : Double
Licence Required : String
Registration Mark : String
First Registered : String

Vehicle
Registration Mark : String
Model : String
First Registered : Date

Rental
From : Date
To : Date1 0..*1 0..*

Option
Option Type : String
Option Value : String

Rental@RentalSystem
Start Date : Date
Number of Days : Integer
Customer Options : String

Rental Unit@RentalSystem
Registration Mark : String
Year of Registration : Integer
Model : String 0..*1 0..*1

Figure 4: Partial realisation model shows how conceptual entities from the High
Level Data Model are realised by the key data objects in three systems, shown in
yellow.

UML realisation relationships are key to this model. Colour and physical layout can be used
to good effect, and a consistent naming scheme such as the one shown should identify both
the logical system entities and their host systems.

Where the conceptual and real entities have a different structure or meaning, then
generalisation and aggregation relationships are used to break down the class structures
until the realisations can be mapped directly, as shown in Figure 4. This approach can be
used even where the HLDM is a meta-model and implementation models are concrete, or
vice-versa.

Source and Consumer Models

The next layer of models show the relationships between different realisations of the same
data item, how changes are propagated across the various systems, and the organisational
custodians of different data elements.

The models are similar to the realisation overviews, except that the focus is on identifying
the role, provenance, and evolution of each data item, using the following stereotypes:

• <<Master>> identifies an agreed master source of data

• <<Use in place>> and <<Update in place>> identify where one system is able to use
another system’s data directly via existing interfaces. Notes should explain how this
works.

• <<Copy>> and <<Updates Copy>> identify where one system takes a regular or
irregular copy of another system’s data (or list of updates), and whether this copy is
used unmodified, or modified by the receiving system. Notes should describe timing
and similar issues.

• <<Independent master>> identifies where a system is not the master, and should
theoretically have a copy of the master data but where the processes are insufficiently
established and as a result the second data set has diverged.

• <<Custodian>> identifies a custodial relationship between a data item and an
organisation or role (shown as a Business Actor, with dependency relationships to
appropriate data classes).

Modelling the Enterprise Data Architecture © Andrew K. Johnston and Richard Wiggins 2003 Page 5

• <<Uses>> identifies a significant cross-organisational usage of data.

Where different attributes are handled in different ways (for example one realisation is
master for some attributes of a class, and another realisation is master for others), the high-
level data model should model those attributes using two or more separate classes. The
Source and Consumer model can then clearly show the different responsibilities.

The following diagram extends our example to show as-is provenance and responsibilities:

Car
Band : enum {A,B,C,D}
Number of Seats : Integer

Van
Capacity (Cubic Metres) : Double
Licence Type : String

Car@CarFleet
Model : String
Band Id : Integer
Seats : Integer
Registration Mark : String
First Registered : Date

Truck@VanCare
Model : String
Capacity (Cubic Feet) : Double
Licence Required : String
Registration Mark : String
First Registered : String

<<Master>> <<Independent Master>>

Vehicle
Registration Mark : String
Model : String
First Registered : Date

Rental
From : Date
To : Date1 0..*1 0..*

Option
Option Type : String
Option Value : String

Sales
DepartmentFleet

Manager

<<Custodian>> <<Custodian>> Rental Unit is
a union of Car
and Van
information

Rental Unit@RentalSystem
Registration Mark : String
Year of Registration : Integer
Model : String

<<Copy>>

<<Custodian>>

Rental@RentalSystem
Start Date : Date
Number of Days : Integer
Customer Options : String

<<Custodian>>

1 0..*1 0..*

<<Master>> <<Master>>

Figure 5: The source and consumer model adds information (in green) which
describes how different realisations are related, and how they relate to different
organisational roles.

Transportation and Transformation Models

The last layer of models describes how the data in implementation systems is transformed as
it moves between systems. They comprise:

• Physical class and attribute structure of system interfaces (which will equate to
database structures where direct data access is the best or only option). This model will
also show realisation of the HLDM within interface mechanisms such as an EAI hub or
backbone,

• Realisation relationships between the different physical data structures,

• Transformation rules at the attribute level, documented using Object Constraint
Language (OCL),

• Interface driver, constraint and timing rules, modelled using interaction or sequence
diagrams.

If this looks a bit complex remember that you don’t have to use this technique all the time,
and you can use simple textual notes rather than OCL if you prefer.

Modelling the Enterprise Data Architecture © Andrew K. Johnston and Richard Wiggins 2003 Page 6

Extending our car rental example, we want to use EAI to keep the Hire Unit list in
RentalSystem up to date, extracting, merging and transforming the two source lists. The
following “to be” model describes the physical interfaces and transformation rules required,
including the canonical structure of data in the EAI messages:

VC Vehicle
- Model

- Capacity
- Licence_Type

- Reg_Mark
- First_Registered

+ Query()

Car
Band : enum {A,B,C,D}
Number of Seats : Integer

Car@CarFleet
Model : String
Band Id : Integer
Seats : Integer
Registration Mark : String
First Registered : Date

Truck@VanCare
Model : String
Capacity (Cubic Feet) : Double
Licence Required : String
Registration Mark : String
First Registered : String

Van
Capacity (Cubic Metres) : Double
Licence Type : String

Rental Unit@RentalSystem
Registration Mark : String
Year of Registration : Integer
Model : String

Vehicle
Registration Mark : String
Model : String
First Registered : Date

Context CarFleetToCanonical:
Band Id = 1 implies Band = 'D'
Band Id = 2 implies Band = 'C'
Band Id = 3 implies Band = 'B'
Band Id = 4 implies Band = 'A'

Context VanCareToCanonical:
Capacity (Cubic Metres) =
Capacity (Cubic Feet) * 33

Context
CanonicalToRentalSystem:
-- Derive Year of Registration
(e.g. 2003) from First
Registered

RS_Unit
- Reg_Mark

- Year_Registered
- Model

+ Insert()

CF_Models
+ Band_Id

+ No_Seats
+ Reg_Mark
+ Reg_Date

+ Query()

CF_Cars
+ Car_Id
+ Model

+ Query()

Vehicle Message
- Change Type : enum {'New','Change','Delete'}
- Registration Mark : String
- First Registered : Date
- Band : enum {A,B,C,D}
- Capacity (Cubic Metres) : Double
- Licence Type : String
- Model : String

+ New()
+ Change()
+ Delete()
+ CarFleetToCanonical()
+ VanCareToCanonical()
+ CanonicalToRentalSystem()

Figure 6: A transformation model adds detail showing how data is transformed as
it moves between systems.

CarFleet has a data-based interface consisting of two main tables, Vancare has a
programmatic interface (for example an object model or web service), as does Rental System
which includes an Insert() function to receive the updates.

Modelling the Enterprise Data Architecture © Andrew K. Johnston and Richard Wiggins 2003 Page 7

Public Standards

Public or industry standards may have two roles:

• They may form the basis for either the HLDM, or realisation of the HLDM within the
EAI backbone and external interfaces,

• They may determine the data structure of external interfaces or some physical systems,
and therefore represent physical data structures to be transformed within interfaces.

Model Meta-Model

To sum up, the meta-model below shows how the various models in our scheme and their
components relate to one another:

Public Standard
Interf ace Attributes
Interf aceOperations

Business Entity
Business Attributes

related to

High-Lev el Data Model
<<Model>>

Realisation Ov erv iew
<<Model>>

<<elaboration>>

Source/Consumer Model
<<Model>>

<<elaboration>>

Organisational Unit

Sy stem Interf ace
Sy stem Attributes
Sy stem Operations

Transportation and
Transf ormation Model

<<Model>>

<<elaboration>>

Message Operation
Translation Rule

Message
Message Attributes

<<Optional>> <<Optional>>

Logical Sy stem Entity
Logical Attributes
Status : enum {master, copy , ...}

related to

+Custodian

Business
Sy stem

Figure 7: The meta model shows how the various models and model elements in
the data architecture relate to one another.

Using and Developing the Data Architecture

The data architecture has many uses. It helps you to get a handle on data as it is really used
by the business, and is a key artefact if you want to develop and implement governance
supporting a Data Strategy. It should also be used to guide cross-system developments such
as Enterprise Application Integration (EAI), common reporting, and data warehousing
initiatives.

Although our explanation proceeded from the top down, the data architecture is usually
developed from the “middle-out,” working from the data requirements of specific system
interfaces and rationalisation exercises, not based on an exhaustive top-down process and

Modelling the Enterprise Data Architecture © Andrew K. Johnston and Richard Wiggins 2003 Page 8

information requirement analysis. This allows it to develop to address specific tactical and
strategic requirements without unmanageable dependencies, and provides a cross-check to
data analysis originated on the basis of separate top-down and bottom-up modelling
exercises.

The data architecture may never be “complete” for the whole enterprise. Even so, it provides
a consistent approach and context for modelling activities. However, as the data architecture
matures it may be appropriate to undertake some work to “fill in the gaps”.

The models, in particular the Source and Consumer models, will support validation of target
business processes, by identifying whether target data is contained within a single system,
maintained by well-defined interfaces and processes, or spread across several (potentially
inconsistent) sources.1

Improving the Data Architecture – A Data Strategy

Modelling the “as is” data architecture can be extremely useful, and it can certainly show
where things are sub-optimal. However, if you want to make future improvements, you will
need more than just good models. Most of the issues around improving data collection,
usage, and governance are non-technical. You will need to develop several things, working
between IS and the business:

1. Principles establishing how the enterprise aims to collect, manage and use data,

2. The data architecture including both “as is” and “to be” models,

3. Governance rules and change control processes for the data architecture, managed
jointly by IS and appropriate business representatives,

4. Policies for data management in each business area:

• What data is stored,

• Who is responsible for its collection and quality,

• Who controls and who administers it,

• How long it must be stored for, and how it is disposed of or archived afterwards,

• Who may have access to it, and how it should be disclosed to parties outside the
normal user groups.

5. A scheme for classifying information and associated risks so that appropriate security
measures can be defined.

You may also need to help improve and document business processes where these need to
change to improve data management.

This Data Strategy needs to be founded on clear, agreed principles, such as the following:

• Wherever possible, data must be simple to enter, accurately reflect the situation, and be
in a useful, usable form for both input and output.

• Data should only be collected where it has known and documented use(s) and value.

1 We plan a future article to discuss how the various models relate to the process of
establishing an integration “backbone” or “hub” between systems, and using this to create
interfaces and populate a data warehouse.

Modelling the Enterprise Data Architecture © Andrew K. Johnston and Richard Wiggins 2003 Page 9

Modelling the Enterprise Data Architecture © Andrew K. Johnston and Richard Wiggins 2003 Page 10

• Data should be readily available to those with a legitimate business need.

• Processes for data capture, validation and processing should be automated wherever
possible. Data should only be entered once.

• Processes which update a given data item should be standard across the enterprise.

• Data should be recorded as accurately and completely as possible, by the most
informed source, as close as possible to its point of creation, in an electronic form at the
earliest opportunity, and in an auditable and traceable manner.

• The cost of data collection and sharing should be minimised.

• The enterprise, rather than any individual or business unit, owns all data.

• Every data source must have a defined custodian (a business role) responsible for the
accuracy, integrity and security of that data.

• Data must be protected from unauthorised access and modification.

• Data should not be duplicated, except where essential for practical reasons. If data
must be duplicated one source must be clearly identified as the master, there must be a
robust process to keep the copies in step, and copies must not be modified.

• Data structures must be under strict change control, so that the various business and
system implications of any change can be properly managed.

• Where possible, adopt international, national or industry standards for common data
models. Where this is not possible, develop organisational standards instead.

Conclusion

A documented understanding of the Enterprise data architecture is an essential pre-requisite
to many common IS and business improvement initiatives. The appropriate models are quite
distinct from both detailed system models and high-level business models. This paper
outlines a set of UML models and techniques which should help to meet these needs.

Modelling the Enterprise Data Architecture © Andrew K. Johnston and Richard Wiggins 2003 Page 11

Further Reading

The use of UML for enterprise modelling is an emerging field. The techniques described here
are new, and this is the first time they have been described publicly. However, we have
found the following very useful introductions to the wider problem of modelling with UML
at an architectural or business level:

1. Business Modeling with UML – Business Patterns at Work, by Hans-Erik Eriksson and
Magnus Penker, pub. Wiley 2000.

2. Enterprise Modeling with UML – Designing Successful Software Through Business Analysis,
by Chris Marshall, pub. Addison Wesley 2000.

3. Realizing e-Business with Components, by Paul Allen, pub. Addison Wesley 2001.

About the Authors

Andrew Johnston is an independent consultant with two decades experience of most parts of
the development life-cycle, and a variety of business sectors in the UK. In recent years he has
focussed mainly on the Enterprise Architecture space, in the gap between IT Strategy,
application design and technology choice. The second edition of his book on software project
management and design, A Hacker’s Guide to Project Management, has just been published by
Butterworth Heinemann. For more details you can contact Andrew and view more material
at www.andrewj.com.

Richard Wiggins has over 20 years experience in the IT industry, and has worked as an
independent consultant for some of the top listed UK companies. Richard specialises in
introducing or extending the use of UML for client organisations, in particular to address
strategic and architectural perspectives. For more details, please contact Richard via e-mail at
rw@patouche.co.uk.

http://www.andrewj.com/
mailto:rw@patouche.co.uk

	Modelling the Enterprise Data Architecture
	What is the Data Architecture?
	Which Models Constitute the Data Architecture?
	High-Level Data Models
	Realisation Overviews
	Source and Consumer Models
	Transportation and Transformation Models
	Public Standards
	Model Meta-Model

	Using and Developing the Data Architecture
	Improving the Data Architecture – A Data Strategy
	Conclusion
	Further Reading
	About the Authors

